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Abstract

We have generalized the approach of M. Dunajski, L. Mason and P. Tod [Einstein–Weyl geometry, the
dKP equation and twistor theory, J. Geom. Phys. 37 (2001) 63–93] and established a 1–1 correspondence
between a solution of the Universal Whitham hierarchy [I.M. Krichever, The τ -function of the universal
Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994)
437–475] and a twistor space. The twistor space consists of a complex surface and a family of complex
curves together with a meromorphic 2-form. The solution of the Universal Whitham hierarchy is given
by deforming the curve in the surface. By treating the family of algebraic curves in CP1

× CP1 as a
twistor space, we were able to express the deformations of the isomonodromic spectral curve in terms of
the deformations generated by the Universal Whitham hierarchy.
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1. Introduction

The Whitham hierarchy originates from the study of the ‘dispersionless limit’ of integrable
systems. The typical set-up involves an introduction of a small parameter ε and a suitable
rescaling of the time variables. For example, if one rescales the times x , t to x̃ = εx , t̃ = εt
in the KdV equation

∂t u = 6u∂x u − ∂3
x u
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one obtains the KdV equation with small dispersion

∂̃t u(x̃, t̃, ε) = 6u∂̃x u(x̃, t̃, ε) − ε2∂̃3
x u(x̃, t̃, ε) (1)

where ∂̃x and ∂̃t denote the derivatives with respect to the tilded variables.
The problem is to study the behavior of the solution u(x̃, t̃, ε) as ε → 0. In general, the

solution contains parts that oscillates rapidly as ε → 0 and the limit does not exist.
However, the weak limit of u(x̃, t̃, ε) can be studied. This is like ‘averaging out’ the oscillatory

part and studying the limit, and such an averaging process is called Whitham averaging [6,7,14,
11,12,21,22,24–26,33].

There is an interesting connection between the small dispersion KdV and deformations of
Riemann surfaces [12].

A finite gap solution of the KdV equation can be expressed in terms of theta functions of a
genus g algebraic curve (the spectral curve). The spectral curve is fixed under the evolution of
the finite gap solution [5,19,20]. In many applications, a solution u(x, t) of the KdV equation
can be approximated by a finite gap solution locally. However, the approximation becomes bad
as (x, t) grows large and the spectral curve that classifies the finite gap solution varies slowly
with respect to (x, t). To study the variations of the spectral curve, one could think of the spectral
curve as depending on the ‘slow times’ (x̃ = εx, t̃ = εt) and study the dependence of u on (x̃, t̃)
in (1) as ε → 0.

In this case, the weak limit of u(x̃, t̃, ε) can be described by 2g + 1 functions that satisfy the
g-phase Whitham equations [33]

∂̃t ui − vg,i (u1, . . . , u2g+1)∂̃x ui = 0, 1 = 1, 2, . . . , 2g + 1 (2)

where vg,i (u1, . . . , u2g+1) depends on ui on complete hyperelliptic integrals of genus g. These
equations can in fact be written in a more compact form

∂̃t dp = ∂̃x dq (3)

where dp and dq are certain meromorphic 1-forms that are normalized on the spectral curve with
respect to a choice of a canonical basis of cycles. To be precise, the spectral curve in this case is
a hyperelliptic curve

w2
= R(z) =

2g+1∏
i=1

(z − ri )

and dp, dq are 1-forms of the form

dp =

g∑
i=1

ci zi

√
R(z)

dq =

g+1∑
i=1

di zi

√
R(z)∫ r2i−1

r2i

dp =

∫ r2i−1

r2i

dq = 0.
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To obtain (2) from (3), we expand dp and dq in terms of z and the coefficients would satisfy (2)
[11,12,6,21].

Krichever has studied equations of the type (3) on more general algebraic curves that cover
the dispersionless limit of other integrable systems and introduced the notion of the Universal
Whitham hierarchy [23]. The Universal Whitham hierarchies, like (3), are expressed in terms
of meromorphic and also holomorphic 1-forms on Riemann surfaces. It has many interesting
applications to 2-D topological quantum field theory, Frobenius manifolds and string theory [1–
4,22,23,32]. Throughout this paper, we will use the term Universal Whitham hierarchy to denote
the system of differential equations defined in Definition 3, while the term Whitham hierarchy
will be reserved for the system of PDE that comes from the Whitham averaging procedure.

In the case where the curve in the question is of genus 0, Dunajski, Mason and Tod have
studied the dispersionless KP (dKP) equation from a point of view of twistor theory, in which a
solutions of the dKP equation is described by a family of rational curves in a complex surface
and a meromorphic 2-form on the surface. This reveals interesting relations between the dKP
equation and the Einstein–Weyl metric [8–10]. In [13], special solutions of the dKP equation
was constructed by using twistor methods.

In this paper, we have generalized the construction of [10] to the case where the curves are
of arbitrary genus. We have established a one–one correspondence between a solution of the
Universal Whitham hierarchy and a twistor space, which is a complex surface with a family of
genus g curves in it. To be precise, we have the following

Definition 1. A twistor space T of the truncated Universal Whitham hierarchy consists of:

1. A 2-dimensional complex manifold T with a meromorphic 2-form Π which is singular on a
divisor D,

2. A family of genus-g embedded curves {Σg,t } and canonical basis of cycles on each curve,
3. A covering Vβ of a neighborhood U of the singular divisor D, and local coordinates k−1

β on

Vβ such that k−1
β has zeros of order 1 at D. A fix point P1 on each curve Σt such that P1 ∈ D

and

Theorem 1. There is a one–one correspondence between a solution of the Universal Whitham
hierarchy and a twistor space T defined above.

The idea is that as the curve moves around in the twistor space, the values of the 2-form Π
evaluated on different curves would give the values of the solution at different times.

We have also studied the following problem which relates the isomonodromic spectral curve
to the Universal Whitham hierarchy. Consider the isomonodromic deformations of the system of
linear ODEs

dY

dz
= A(z)Y

where A is an n × n matrix such that

A(z) = GT(∆ − z)−1 F + C

where G, F are n × r matrices constant in z, ∆ = diag(α1, . . . , αr ) and C = diag(c1, . . . , cn).
Define the dual isomonodromic spectral curve [15,27] of this isomonodromic system by

det
[
M −

(
z 0
0 w

)]
= 0.
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These spectral curves are known to vary as the matrix A(z) deforms isomonodromically.
The family of spectral curves is a family of algebraic curves in CP1

× CP1 defined by
polynomials P(z, w) that has degree at most n in w and r in z. Since the family of curves defined
by all polynomials P(z, w) with degree at most n in w and r in z forms a twistor space for the
Universal Whitham hierarchy, we can compare the changes of the spectral curve induced by
isomonodromic deformations and the changes induced by the Whitham hierarchy. This problem
was posted by Takesaki in [28,29] in a slightly different form. We were able to derive formulas
that express the isomonodromic flows in terms of the Universal Whitham flows in Proposition 8.

This paper is organized as follows. In Section 2 we will give a brief introduction to the
Universal Whitham hierarchy and establish some notations. In Section 3 we will construct the
twistor space for the Universal Whitham hierarchy and in Section 4 we will give some examples
and study the isomonodromic spectral curves.

2. The Universal Whitham hierarchy

In this section we will give a brief introduction to the Universal Whitham hierarchy in [23].
Let Mg,N ,nα be the modulus space of genus g curves Γg,q with N punctures Pα(q), fixed nα-

jets of local coordinates k−1
α (q) in neighborhoods of Pα(q) and canonical basis of cycles ai (q),

bi (q). The marked points, local coordinates and basis change from curve to curve, but the genus
g of the curves, the total number of marked points N and the numbers nα do not vary between
curves. Let

∑
α(nα + 1) = H then the dimension of the modulus space Mg,N ,nα is 3g − 2 + H .

That is, we have

Mg,N = {Γg,q , Pα(q), k−1
α (q), ai (q), bi (q) ∈ H1(Γg,q , Z)}.

The tautological bundle M̂g,N ,nα → Mg,N ,nα is the fiber bundle over Mg,N ,nα with the fiber
at each point q of Mg,N ,nα being the curve Γg,q . The curves Γg,q at different points are not
holomorphic to each other in general.

We consider each fiber Γg,q as a genus g Riemann surface with canonical basis {ai (q), bi (q)}

of cycles, marked points Pα(q) and local coordinates k−1
α (q) near Pα(q). We now define various

meromorphic 1-forms dΩµ,ν(q) on these Riemann surfaces according to the following

Definition 2. The meromorphic 1-forms dΩA where A = (µ, ν) a double index are defined by

1. dΩα,i (q) are meromorphic 1-forms of the second kind which are holomorphic outside Pα(q)

and have the form

dΩα,i (q) = d(ki
α(q) + O(k−1

α (q))) (4)

near Pα(q), where i = 1, . . . , nα .
2. dΩα,0(q), α 6= 1 are meromorphic 1-forms of the third kind with residues 1 and −1 at P1(q)

and Pα(q) respectively, and they look like

dΩα,0 = dkα(q)(k−1
α (q) + O(k−1

α (q)))

− dk1(q)(k−1
1 (q) + O(k−1

1 (q))) (5)

near Pα(q) and P1(q).
3. dΩh,k(q), (k = 1, . . . , g and h fixed) are the normalized holomorphic 1-forms∮

ai (q)

dΩh,k(q) = δi,k, i, k = 1, . . . , g. (6)
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4. The differentials in 1 and 2 are uniquely determined by the normalization conditions∮
ai (q)

dΩA(q) = 0 (7)

where the index A = (α, i).

We now fix an index (α, i) = (1, 1) and denote dΩ1,1(q) by dp(q). Let the multi-valued
function p(q) be defined by the abelian integral of dp(q)

p(P, q) =

∫ P

dp(P, q) (8)

where P ∈ Γg,q . We will now suppress the dependence of q and bear in mind that everything
depends on the point q of the modulus space. We can expand the local coordinates kα in terms
of the function p near each marked point Pα .

kα =

∞∑
s=−1

να,s(p − pα)s, α 6= 1 (9)

where pα = p(Pα), and for α = 1

k1 = p +

∞∑
s=1

ν1,s ps . (10)

We can now use the parameters

{pα = p(Pα), να,s, α = 1, . . . , N , s = −1, . . . , nα}

σs = p (Σs) , dp (Σs) = 0, s = 1, . . . , 2g − 2

U p
i =

∮
bi

dp, i = 1, . . . , g

(11)

as coordinates on the modulus space Mg,N ,nα . Note that we only need the coefficients να,s up
to s = nα as we are considering nα-jets, which means that terms of order ki

α , i > nα are all
equivalent and do not make any difference.

Suppose we have some unknown functions tµ,ν on the modulus space Mg,N ,nα which are
in 1–1 correspondence with the 1-forms dΩµ,ν . That is, the tµ,ν are unknown functions of the
coordinates (11). Also, suppose these functions tµ,ν form a coordinate system on a subspace M ′

of Mg,N ,nα . Let Ωµ,ν be the abelian integrals of dΩµ,ν as in (8). Let M̂ ′ be the tautological bundle
over M ′. We now construct a 2-form Π on M̂ ′, by using the tµ,ν and Ωµ,ν as follows

Π =

∑
A

δΩA ∧ dtA (12)

where for simplicity, we write (µ, ν) = A and

δΩA = ∂pΩAdp +

∑
B

∂BΩAdtB .

When performing the derivative, we treat tA and p as independent variables on M̂ ′.
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Krichever’s construction of the Universal Whitham hierarchy is then equivalent to the
following. One wants to ask: how should the tA depend on (11) if we want Π to be simple?

Π ∧ Π = 0. (13)

The coefficients of dp ∧dtA ∧dtB ∧dtC of Π ∧Π give the following set of partial differential
equations∑

εABC∂AΩB∂pΩC = 0

where the summation is taken over all the permutations of A, B and C and εABC is the sign of
the permutation. By taking C = (1, 1), and denote t1,1 by x , we get the following

∂AΩB − ∂BΩA + {ΩA,ΩB} = 0 (14)

where { f, g} is the Poisson bracket with respect to the symplectic form dx ∧ dp.
This set of partial differential equations is called the truncated Universal Whitham hierarchy

W (nα).
By expanding both sides of these equations in terms of p, we obtain partial differential

equations of the coordinates (11) with respect to the tA. By solving these equations, we obtain the
coordinates (11) as functions of tA and also define M ′. Of course, the tA do not form a complete
set of coordinates on the modulus space Mg,N ,nα , so the truncated Universal Whitham equations
in fact give the coordinates of the modulus space in terms of the tA on the subspace M ′ where
the tA becomes a complete set of coordinates.

The Eqs. (14) should be understood as a system of PDE relating the tA and the coordinates
(11), which enter the equations as the coefficients of the multi-valued ‘functions’ ΩA expanding
in terms of the multi-valued ‘coordinate’ p on the curve Γg,q . Namely, we choose branches of
the functions ΩA and p such that the expansions give the coordinates (11). The Eqs. (14) should
only be understood locally. Having this interpretation in mind, we will now take a closer look at
the consequence on (14).

Proposition 2. The truncated Universal Whitham hierarchy (14) gives

∂AU p
i = ∂xU A

i , U A
i =

∮
bi

dΩA, i = 1, . . . , g (15)

∂Aσs = ∂xΩA (Σs) , s = 1, . . . , 2g − 2

after expanding the terms near σs and taking the b-periods, where the 1-forms are defined in
Definition 2.

Proof. Consider the b-periods of Eqs. (14). First note that since p 7→ p +U p
i after going around

the cycle bi , the vector fields ∂A becomes ∂A 7→ ∂A + ∂AU p
i ∂p after going around a bi -cycle.

The bi -period of (14) is therefore

(∂AU p
i − ∂xU A

i )∂pΩB − (∂BU p
i − ∂xU B

i )∂pΩA + ∂AU B
i − ∂BU A

i . (16)

By multiplying both sides by dp, we can view these as equations of 1-forms. Since the 1-forms
dΩµ,ν are linearly independent, the coefficient of dΩB must vanish, which gives the first set of
equations in (22).

The second set of equations is obtained by looking at the behavior of (14) near the branch

points σs . Near the branch points σs , we have to use (p − σs)
1
2 as a local coordinate. We expand
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the functions ΩA near σs as follows

ΩA = ΩA (Σs) + βA,1(T ) (p − σs)
1
2 + βA,2(T ) (p − σs) + · · · . (17)

We now expand (14) near the point σs . The term ∂AΩB is of the form

∂AΩB = −∂Aσs∂pΩB + O(1) (18)

and the term ∂xΩA∂pΩB is of the form

∂xΩA∂pΩB = ∂xΩA (σs) ∂pΩB

+ βA,1(T )βB,1(T )

(
−

1
4

)
∂xσs (p − σs)

−1

−

(
1
2
βA,1(T )βB,2(T )∂xσs

+
1
2
βA,2(T )βB,1(T )∂xσs

)
(p − σs)

−
1
2

+ O(1)

(19)

since the second and the third terms in the right hand side is symmetric in A and B, the expansion
of (14) near σs is then

(−∂Aσs + ∂xΩA (Σs)) ∂pΩB + (−∂Bσs + ∂xΩB (Σs)) ∂pΩA + O(1) (20)

we now choose ΩB such that dΩB(Σs) 6= 0. For example, the holomorphic 1-forms dΩh,k only
have 2g − 2 zeros while the number of points Σs is 2g. Therefore there exists some B = (h, k)

such that dΩB(Σs) 6= 0. By a similar argument as before, we arrive at the second set of equations.
�

We also want the truncated Universal Whitham hierarchy W (nα) to be embedded in an infinite
hierarchy with nα → ∞. This would give us the following

Proposition 3. As nα → ∞ for all α, the truncated Universal Whitham hierarchy (14) gives

∂Akα − {kα,ΩA} → 0 (21)

for the 1-forms ΩA defined in Definition 2.

Proof. The proof can be found in [23]. Let B = (α, j) and A = (β, i) in (14). Let X− be the
holomorphic part of X at Pα . Then we have

∂Ak j
α − {k j

α,ΩA} = ∂BΩA − {ΩA, (ΩB)−}.

Since A = (β, i) and (ΩB)− is holomorphic at Pα , the worst pole that the right hand side could
have at Pα is of order i . Therefore

∂Ak j
α − {k j

α,ΩA} = O(ki− j
α ).

By letting j → ∞, the proposition is proved. �

We can now define the truncated Universal Whitham hierarchy as a system of PDE for the
coordinates (11).
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Definition 3 (Truncated Universal Whitham Hierarchy). The truncated Universal Whitham
hierarchy W (nα) is defined as the following system of PDEs

∂Akα + {ΩA, kα} = 0

∂AU p
i = ∂xU A

i , U A
i =

∮
bi

dΩA, i = 1, . . . , g

∂Aσs = ∂xΩA (Σs) , s = 1, . . . , 2g − 2

(22)

for the 1-forms defined in Definition 2.

To define these equations, we only use the coefficients of the ΩA up to the pnα term. Since these
coefficients are expressible in terms of (11), the PDE (22) defines the functional relation between
the tA and (11).

The set of differential equations (14) with indices A, B = (α, i) only (that is, excluding the
indices (h, k) in 4) are called the Whitham hierarchy, they represent the dispersionless limits of
integrable hierarchies.

For simplicity, we would, from now on, drop the word truncated and simply call W (nα) the
Universal Whitham hierarchy.

Remark. Although the vector fields ∂A are multi-valued on M̂g,N ,nα , they are, nevertheless,
well-defined as normal vectors of the curve Γg,q ⊂ M̂g,N ,nα . This turns out to be crucial in our
construction of the twistor space.

2.1. Generating form of the Universal Whitham hierarchy

The Eqs. (14) can be considered as compatibility conditions of the system

∂A Eβ = {Eβ ,ΩA} (23)

where Eβ is defined on some open set Vβ on Γg,q . We can perform another change of variable
and view Eβ , tA as independent variables. The set of Eqs. (14) then becomes

∂AΩB(Eβ , t) = ∂BΩA(Eβ , t) (24)

in these new coordinates. Eqs. (24) suggest the existence of a potential S(Eβ , t) such that

∂A Sβ(Eβ , t) = ΩA(Eβ , t). (25)

The 2-form Π is then

Π = δEβ ∧ δQβ (26)

where Qβ = ∂Eβ Sβ .
The functions Qβ and Eβ satisfy a ‘string equation’

{Qβ , Eβ} = 1 (27)

this implies that Qβ is also a solution of (23)

∂A Qβ = {Qβ ,ΩA}. (28)
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3. The twistor space of the Universal Whitham hierarchy (genus-g curves)

We will now proceed to construct the twistor space of the Universal Whitham hierarchy. We
will first construct a twistor space from the Universal Whitham hierarchy and study its properties.
We will then extract these properties to define a twistor space and recover the Universal Whitham
hierarchy from it. In constructing the twistor space (the direct construction), we will assume that
we are given a solution to the Universal Whitham hierarchy and therefore we know the functional
relation between tA and the coordinates (11) and also the subspace M ′ of Mg,N ,nα where tA

forms a complete set of coordinates. We will denote the tautological bundle over M ′ by M̂ ′. In
particular, the 2-form Π is defined on M̂ ′.

3.1. The symplectic reduction of M ′

Following the spirit of [10], we will treat the 2-form Π as a presymplectic form on M̂ ′ and
take the symplectic reduction of (M̂ ′,Π ). This then gives us a 2-dimensional manifold which we
will call the twistor space of the Universal Whitham hierarchy.

We first study the kernel of the 2-form Π . Due to the simplicity condition (13), the kernel is
generically of codimension 2. We have the following

Proposition 4. The kernel of the 2-form Π is spanned by the vector fields

∂A − ∂xΩA∂p + ∂pΩA∂x . (29)

Proof. This can be verified by direct calculation. We first contract ∂A with Π , where we use
(p, tA) as our independent variables.

∂AyΠ =

∑
B 6=(1,1)

(∂AΩB − ∂BΩA)dtB − ∂pΩAdp − ∂xΩAdx .

We now apply (14) to the above equation and get

∂AyΠ =

∑
B 6=(1,1)

(∂xΩB∂pΩA − ∂xΩA∂pΩB)dtB − ∂pΩAdp − ∂xΩAdx . (30)

We then consider the contraction between Π and ∂p, ∂x respectively.

∂pyΠ = dx +

∑
B

∂pΩBdtB

∂xyΠ = −dp +

∑
B

∂xΩBdtB .
(31)

By comparing these with (30), we see at once that

(∂A − ∂xΩA∂p + ∂pΩA∂x )yΠ = 0.

This concludes the proof of the theorem. �

We can now consider the distribution Y spanned by the vector fields (29). Since these span
the kernel of a closed 2-form, this distribution is integrable. Note that although the 2-form Π
is degenerate and singular on some codimension-1 sets, this distribution is still well-defined on
these sets. We would like to consider the leaf space of this distribution. That is, we would like to
study the space M̂ ′/Y . This will be our twistor space T .
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Remark. Note that the distribution Y is well-defined despite the fact that both ∂A and ΩA are
not single valued. The vector field ∂A − ∂xΩA∂p + ∂pΩA∂x is defined up to an addition of

∂AU A
i ∂p − ∂xU p

i ∂p − ∂xU p
i ∂pΩA∂p + ∂pΩA∂xU A

i ∂p

which vanishes due to the second set of equations in Definition 3. The distribution is therefore
well-defined.

We can now study the properties of T . The following gives us a more concrete picture of what
T looks like.

Proposition 5. The variables Eβ , Qβ and kα are functions on T . In particular, if we use them
as local coordinates on T , the 2-form Π becomes Π = dEβ ∧ dQβ on T .

Proof. The proof is nothing more than unwinding the definition of { f, g} in Eqs. (23), (28) and
(22), which says that given a vector field X ∈ Y , X (E) = X (Q) = X (kα) = 0. �

There is also a family of embedded curves in T , which are projections of the curves Γg,q .
These curves are labelled by the parameter tA. In explicit terms, these embeddings are given by

Qβ = ∂Eβ Sβ (32)

as this equation is defined on the curves Γg,q for tA = constant.
The 2-form Π descends to the twistor space T to give a meromorphic section Π of the

canonical bundle of T , which is non-degenerate except on a codimension-1 subspace. Given
a section T of the normal bundle Nq of a embedded curve Γg,q ⊂ T , the map µT = T yΠ |Γg,q

gives a meromorphic 1-form on Γg,q which can only have poles at the singular set of S of Π with
order less than or equal to that of Π . This then defines an isomorphism between H0(Γg,q , Nq)

and H0(Γg,q , K ⊗ [D]), where K is the canonical bundle of the Γg,q and [D] is the line bundle
associated with the pole divisor of Π . Therefore we have the following

Proposition 6. The normal bundle of an embedded curve Γg,q ∈ T is isomorphic to K ⊗ [D],
where K is the canonical bundle of Γg,q and [D] is the pole divisor of Π .

In fact, the 1-forms ∂AyΠ are nothing but the 1-forms −dΩA, since we have

∂AyΠ |Σ = (∂xΩA∂p − ∂pΩA∂x )y (dE ∧ dQ) |Σ

= {(∂x Q∂pΩA − ∂p Q∂xΩA)∂p E − (∂x E∂pΩA − ∂p E∂xΩA)∂p Q}dp

as dtA|Σ = 0. We now apply the string equation (27) to obtain

∂AyΠ |Σ = ∂pΩAdp = −dΩA. (33)

3.2. The twistor space of the Universal Whitham hierarchy

This concludes our study of the properties of T . We will now define a twistor space
independently and show that it gives a solution to the Universal Whitham hierarchy. We first
define the twistor space of a Universal Whitham hierarchy.

Definition 4. A twistor space T of the truncated Universal Whitham hierarchy consists of:

1. A 2-dimensional complex manifold T with a meromorphic 2-form Π which is singular on a
divisor D,
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2. A family of genus-g embedded curves {Σg,t } and canonical basis of cycles on each curve,
3. A covering Vβ of a neighborhood U of the singular divisor D, and local coordinates k−1

β on

Vβ such that k−1
β has zeros of order 1 at D. A fix point P1 on each curve Σt such that P1 ∈ D.

The main result in this section is the following

Theorem 7. There is a one–one correspondence between a solution of the Universal Whitham
hierarchy and a twistor space T defined above.

Proof. Given a solution to the Universal Whitham hierarchy, we can take the symplectic
reduction of its modulus space as we did in the last section to get a twistor space T . The local
coordinates kα near each marked point Pα are well-defined on the twistor space due to (21) and
they give the local coordinates in 3 of Definition 4.

This gives the first half of the proof. To go the other way round, we want to recover the space
M̂ ′ and show that the pull-back Π̃ of the 2-form Π to M̂ ′ has the correct form. The simplicity
condition follows automatically as Π̃ is the pull-back of a 2-form on a 2-dimensional manifold.

The space M ′ is the set of curves {Σg,t }. By considering E and Q as functions of the tA, we
can pull back the 2-form Π to the space M̂g,N . This can be achieved by expanding E and Q near
the divisor D in terms of the local coordinate

p = −

∫
dΩ1,1

and considering the coefficients as functions of t .
Now choose representatives ∂A of normal vectors such that

∂AyΠ = (∂xΩA∂p − ∂pΩA∂x )yΠ (34)

where ∂xyΠ = −dp. We see that

(∂xΩA∂p − ∂pΩA∂x )yΠ |Σ = ∂pΩAdp

since µ∂x = −dp. We see that tA is a complete set of coordinates on M ′ because the ∂A generate
all the possible deformations of the curves and are independent.

We have

Π̃ =

(∑
A

∂A EdtA + ∂p Edp

)
∧

(∑
B

∂B QdtB + ∂p Qdp

)
. (35)

We now contract Π̃ with ∂A and make use of (34). The dtB component of ∂AyΠ̃ then gives

∂xΩ∂p E∂B Q − ∂p Q∂xΩA∂B E + ∂pΩA∂x E∂B Q − ∂pΩA∂x Q∂B E (36)

while the dp component gives

∂pΩA∂x E∂p Q − ∂pΩA∂x Q∂p E (37)

since this is just −∂pΩA, we obtain the string equation (27). Note that (34) can be written as

(∂A − ∂xΩA∂p + ∂pΩA∂x )(E)dQ = (∂A − ∂xΩA∂p + ∂pΩA∂x )(Q)dE

this gives (23) and (28), which implies the compatibility of the flows (14). By applying (23) and
(28)–(36) and making use of the string equation (27), the expression (36) becomes

∂xΩA∂pΩB − ∂pΩA∂xΩB = ∂BΩA − ∂AΩB (38)
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this proves the theorem follows. �

Remark. As in the case of the dKP equation [10], the Whitham hierarchy depends on the choice
of coordinates, which is reflected in 3 of Definition 4.

4. Examples

We will now look at a few examples of twistor spaces of Universal Whitham hierarchies.

Example 1. The dKP equation [10].

The first example is the dKP equation, its twistor space was first constructed in [10] from the
Einstein–Weyl metric. This is the case of a Whitham hierarchy with genus-0 curves. In this case,
the Universal Whitham hierarchy and the Whitham hierarchy become the same.

The twistor space of this equation is given by a 2-dimensional complex manifold T such that
the 2-form Π is singular at a connected set D with order 4. The Darboux coordinates E , Q
are chosen so that E , Q are singular on D with orders 1 and 2 respectively. There is only one
fixed point E = Q = ∞. The local coordinate is chosen to be Q. The normal bundles of the
curves are then O(2) (since the order of poles of the normal bundle at p = ∞ cannot exceed the
corresponding one of Q).

The solution to the Whitham hierarchy is recovered by expanding E and Q near z = ∞.

Q = p +

∑
ui p−1, E =

∑
vi Q−i

+ x + Qy + Q2t. (39)

By using Π = dE ∧ dQ and the singular structure of Π , we see that the pull-back Π̃ has the
form

Π̃ = dx ∧ dp + dy ∧ d
(

1
2

p2
+ u1

)
+ dt ∧ d

(
1
3

p3
+ pu1 + w1

)
(40)

the simplicity of this 2-form then gives a solution to the dKP equation

((u1)t − u1(u1)x )x = (u1)yy . (41)

Example 2. Elliptic curves.

We now look at the set of elliptic curves Γq in CP1
× CP1, these are given the equation

w2
= 4z3

− g1z − g2. (42)

We take the twistor space to be CP1
×CP1 with coordinates (w, z) and consider the deformations

of the curve.
We first choose the 2-form to be dw ∧ dz, and we will choose the local coordinate k to be w

z .
The marked point will be the point where dw ∧ dz be comes singular on the curve, that is, the
point (∞, ∞). We shall simply denote this point by ∞. Let λ be the uniformization parameter
of the curve, and ℘(λ) be the Weierstrass function. We choose our basis of cycle such that

∮
a

dλ =
2g

−
1

10
3 g

−
1
15

7

4
. (43)
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Since z = ℘(λ) and w = ℘′(λ), we see that the divisor D is of order 7 on the curve. The space
H0(Γq , Nq) is therefore of dimension 7 (since there is no meromorphic 1-form with a simple
pole on Γq , the dimension is 7 instead of 8). We also want to fix the marked point (∞, ∞) so
we want all the curves to intersect this point. This means we only consider a six-dimensional
subspace of H0(Γq , Nq). In particular, since the normal vector N such that µN has a pole of
order 7 does not vanish at (∞, ∞), it will move the marked point and we shall not consider
flows generated by such normal vectors.

We shall see in a moment that the full family of curves obtained from deforming (42) is given
by

g3w
2
+ g4w + g5wz+ = g6z3

+ g7z2
− g1z − g2 (44)

subject to a scale invariant such that∑
gi∂gi = 0. (45)

Each curve in (44) can be brought to the standard form (42) by a linear transformation

w′
= aw + bz + c, z′

= ez + f

(w′)2
= 4(z′)3

− g̃1z′
− g̃2 (46)

therefore we can write the Weierstrass functions as

℘(λ) = ez + f, ℘′(λ) = aw + bz + c. (47)

By comparing (46) with (44), we see that the coefficients a, . . . , f are given by

a = g
1
2
3 , b =

1
2

g5g
−

1
2

3 , c =
1
2

g4g
−

1
2

3 ,

e =

(g7

4

)−
1
3
, f =

1

12e2

(
g8 +

1
4

g2
5 g−1

3

)
g̃1 =

1
e

(
g1 + 12e f 2

−
1
4

g4g5g−1
3

)
g̃2 = g2 − g̃1 f + 4 f 3

− c2.

(48)

We can therefore compute various powers of the jet k in terms of the Weierstrass function and
hence compute the 1-forms dΩ∞,i . We shall now denote dΩ∞,i by dΩi .

dΩ1 =
2e

a
(℘ (λ) − ω)dλ

dΩ2 = 4
( e

a

)2
(

℘′(λ) −
b

e
(℘ (λ) − ω)

)
dλ

dΩ3 =

( e

a

)3
[

4℘′′(λ) −
12b

e
℘′(λ) +

(
24 f + 6

(
b

e

)2
)

(℘ (λ) − ω)

]
dλ
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dΩ4 =

( e

a

)4
[

32℘′(λ)℘ (λ) −
16b

e
℘′′(λ)

+

(
24
(

b

e

)2

+ 64 f

)
℘′(λ)

+

(
−96

b f

e
− 32c − 8

(
b

e

)3
)

(℘ (λ) − ω)

]
(49)

dΩ5 =

( e

a

)5
[

16(℘′(λ))2
+ 16℘(λ)℘′′(λ) − 160

b

e
℘′(λ)℘ (λ)

+

(
40
(

b

e

)2

+ 80 f

)
℘′′(λ) +

(
−320

b f

e
− 80c − 40

(
b

e

)3
)

℘′(λ)

+

(
240

(
b

e

)2

f + 160
bc

e
− 16g̃1 + 10

(
b

e

)4

+ 480 f 2

)
(℘ (λ) − ω)

]
(50)

where ω is the a-period of ℘(λ)dλ divided by the factor
2g

−
1
10

3 g
−

1
15

7
4 in (43). The holomorphic

1-form dΩh,1, which we will denote by dΩ0 is

dΩ0 =

2g
−

1
10

3 g
−

1
15

7

4

−1

dλ. (51)

The Universal Whitham hierarchy that we are trying to solve is of the form

∂ j dΩi − ∂i dΩ j + {dΩi , dΩ j } = 0. (52)

The coefficients of the expansion of the above equations can be expressed in terms of the gi in
(44). We will therefore treat the coefficients gi as a solution to (52) and express them in terms of
ti . In fact, we will express ti in terms of the gi .

We first look at the tangent bundle of the curve Γq . By differentiating (44), we see that the
tangent bundle is spanned by

= = (2g3w + g4 + g5z)∂z − (3z2g6 + 2zg7 − g1 − g5w)∂w (53)

and the normal bundle of the curve Γq is spanned by{
w∂w − z∂z, ∂w, z∂w, ∂z,

∂w

(2g3w + g4 + g5z)
,

z∂w

(2g3w + g4 + g5z)

}
(54)

since the contraction of these vector fields with dw ∧ dz gives 1-forms of desired order.
We can also see this as follows. Since the poles of dw, dz are of order 4 and 3 at ∞, ∂w

and ∂z vanish to the order 4 and 3 at ∞ respectively. Therefore the vector fields w∂w etc.
are holomorphic on Γq . However, the vector fields w2∂w and z2∂z which are holomorphic on
CP1

× CP1 are not holomorphic on Γq . On the other hand, vector fields like z∂w that are not
holomorphic on CP1

× CP1 become holomorphic on Γq as Γq only intersects z = ∞ and
w = ∞ at (∞, ∞). Also, the vector fields ∂w

(2g3w+g4+g5z) and z∂w

(2g3w+g4+g5z) are holomorphic as
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∂w is tangent to Γq when the denomination vanishes on Γq , which we can see by setting = = 0
in (53). Therefore the above are holomorphic normal bundles on Γq .

Since ∂w acts on CP1
×CP1 by an infinitesmal translation of w, we see that the normal vectors

(54) generate the following movements of the curve.

w∂w − z∂z = 5g3∂g3 + 2g4∂g4 + 3g2∂g2 + 4g1∂g1 + g7∂g7 + 3g5∂g5 ,

∂w = −2g3∂g4 + g4∂g2 + g5∂g1 ,

z∂w = 2g3∂g5 + g4∂g1 − g5∂g7 ,

∂z = g5∂g4 + 3g6∂g7 − 2g7∂g1 + g1∂g2 ,

∂w

(2g3w + g4 + g5z)
= ∂g2 ,

z∂w

(2g3w + g4 + g5z)
= ∂g1

where we have used the scale invariance
∑

i gi∂gi = 0 to eliminate the g6∂g6 term in the first
equation. We see that the full family of curves is of the form (44). By contracting the normal
vectors with respect to the 2-form Π and using µti = −dΩi , we see that

∂g1 =
1
g6

∂t1 + ∂g1 t0∂t0

∂g2 = g
−

3
5

3 g
−

2
5

6 ∂t0

∂g3 =
g3

5g6
∂t5 +

1
4

g5

g2
6

∂t4 −
g8

3g2
6

∂t3 + ∂g3 t0∂t0

∂g4 =
1

2g6
∂t2 + ∂g4 t0∂t0

∂g5 =
g3

4g2
6

∂t4 +
g5

3g2
6

∂t3 −
g7

2g2
6

∂t2 + ∂g5 t0∂t0

∂g7 = −
g3

3g2
6

∂t3 −
g5

2g2
6

∂t2 +
g7

g2
6

∂t1 + ∂g5 t0∂t0

(55)

while the functions ∂gi t0 are expressed in terms of gi and ω. From (55), we see that

t1 =
2g1 + g2

7

2g6
+ c1

t2 =
g4 − g5g7

2g6
+ c2

t3 = −
g8g3 + g2

5

3g2
6

+ c3

t4 =
g3g5

4g2
6

+ c4

t5 =
g2

3

5g6
+ c5

(56)
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where ci are integration constants. While t0 satisfies the following equations

∂g1 t0 = g
−

3
5

3 g
−

2
5

6

[
ωe−1

−
1
3

(
g7

g6
+

g2
5

4g6g3

)]

∂g2 t0 = g
−

3
5

3 g
−

2
5

6

∂g3 t0 =
1

5g3

[(
g2

4

g3
− 3g2 −

g7g5g4

6g6g3
+

g7g1

3g6
−

g3
5 g4

4g2
3 g6

+
g2

5 g1

2g3g6

)
∂g2 t0

+

(
g4g5

g3
− 4g1 −

g7g2
5

6g6g3
−

2g2
7

3g6
−

g4
5

4g2
3 g6

−
g2

5 g7

g6g3
+

3g5g4

2g3

)
∂g1 t0

]

∂g4 t0 =
1

2g3
(−g4∂g1 t0 − g5∂g2 t0)

∂g5 t0 =
1

2g3

[(
g2

5 g4

6g6g3
−

g5g1

3g6

)
∂g2 t0 +

(
g2

3

6g6g3
+

2g5g7

3g6
− g4

)
∂g1 t0

]

∂g7 t0 =
1

3g6

[(
g5g4

2g3
− g1

)
∂g2 t0 +

(
g2

5

2g3
+ 2g7

)
∂g1 t0

]

(57)

where e = (4−1g6)
1
3 .

This gives a solution to the Universal Whitham hierarchy (52) given by twistor theory.

Example 3. Algebraic curves in CP1
× CP1.

This example generalized the last example to the case where the curves are given by a
polynomial

P(w, z) = 0.

In this case we choose the symplectic form to be dz ∧ dw. The twistor space is then a subset of
the normal bundle which consists of normal vectors T such that µT |Σ are normalized 1-forms.
This gives us the deformations of the curve Σ that correspond to the Whitham deformations.

Spectral curves of the dual isomonodromic deformations

The isomonodromic problem was studied by Jimbo et al. [16,17]. Suppose we have a linear
system of ODE

d
dz

Ψ(z) = A(z)Ψ(z) (58)

where A(z) is an n × n matrix-valued rational function in z

A(z) =

∑
α∈D

Aα(z)

(z − α)rα
+ A∞(z)

where Aα(z) are polynomials in z−α of degrees rα −1, A∞(z) is a polynomial of degree r∞ and
D is a divisor in CP1. We call the system non-resonant if the leading terms of Aα have distinct
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eigenvalues when rα > 1 and that no eigenvalues of the leading terms of Aα differ by an integer
when rα = 1. In this case, we can find unique formal solutions to the system of the form

Ψ(z − α) = Y (α)(z) exp(Dα(z) + mα log(z − α)) (59)

as z → α, where Y (α)(z) =
∑

∞

j=0 Y (α)
j (z − α)− j is a formal Taylor series of matrix that is

invertible at z = α and Dα(z) is a diagonal matrix with polynomial entries in z − α. The matrix
mα is a diagonal matrix and is called the exponent of formal monodromy.

It is known (e.g. [31]) that near each pole α of A(z), there exist sectors S( j)
α on which solutions

Ψ ( j)
α that are asymptotic to the one in (59) exist.
By comparing solutions on different sectors, one obtains the Stokes matrices S(α)

jk =

(Ψ ( j)
α )−1Ψ (k)

α . Similarly, analytic continuations of solutions near different poles define the
connection matrices [18]. Let us denote the coefficients of Dα and the pole positions α by T
collectively. The isomonodromic problem is to find the dependence of the matrix A(z) on T such
that the Stokes matrices, the connection matrices and the exponent of formal monodromy remain
constant. It was shown in [16] that the dependence A(z, T ) of A(z) on T is determined by the
following differential equation of A(z, T )

dA(z, T ) = ∂z B(z, T ) − [A(z, T ), B(z, T )] (60)

where d is the exterior derivative with respect to T and B(z, T ) is a rational matrix 1-form.
The ‘spectral curve’ of the isomonodromic problem is then defined by the algebraic equation

[15,27]

det(w − A(z, T )) = 0. (61)

Unlike the spectral curves of other integrable systems, the ‘spectral curve’ of an isomonodromic
problem is not preserved by the isomonodromic flows. One can see this from (60). The term
[A(z, T ), B(z, T )] on the right hand side of (60) would preserve the spectral invariance whereas
the term ∂z B(z, T ) would lead to deformations of the spectral curve.

From now on we will consider a simple case in which the matrix A(z) is of the following form

A(z) =

r∑
i=1

Ai

(z − αi )
+ C (62)

where Ai are rank 1 matrices constant in z and C is a diagonal matrix constant in z, C =

diag(c1, . . . , cn). The deformation parameters in this case are the αi and the ci .
In this case, a technique called ‘duality’ [15] can be employed to obtain an algebraic curve

that is birational to the spectral curve. Moreover, this curve is defined by the zero locus of
a polynomial P(z, w) = 0 in CP1

× CP1. These curves were considered by Sanguinetti
and Woodhouse [27]. The explicit construction goes as follows. Let ∆ be the diagonal matrix
∆ = diag(α1, . . . , αr ). Since all the Ai are of rank 1, we can write the matrix A(z) as follows

A(z) = GT(∆ − z)−1 F + C (63)

where G, F are n × r matrices constant in z.
There is a ‘dual isomonodromic problem’ associated with it, which is defined by

∂w − F(c − w)−1GT
− ∆. (64)
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It was shown [15] that when A(z) is deformed isomonodromically, the dual system also
undergoes isomonodromic deformation.

The dual isomonodromic spectral curve is defined by the following polynomial in w and z

det
[
M −

(
z 0
0 w

)]
= 0 (65)

where M is the following matrix

M =

(
∆ −F
G t C

)
.

The genus of such a curve is shown in [27] to be (n − 1)(r − 1). The whole set of curves ΣT
obtained by deforming the spectral curve through isomonodromic deformations forms an n + r
parameter family of curves. This is a subset of curves defined by the zero locus of all polynomials

r∑
i=0

n∑
j=0

X i j z
iw j

= 0

which is an nr = 2n + 2r + g parameter family of curves. We can treat this family of curves
and the two-dimensional complex manifold CP1

× CP1 as a twistor space of the Universal
Whitham hierarchy as in Example 3. The 2-form is given by dz ∧ dw and the fixed points
are the intersection points between z = ∞, w = ∞ and the curves. These are the points
(z = ∞, w = ci ) and (z = αi , w = ∞). The local coordinates near z = ∞ are chosen to
be z−1 and the local coordinates near w = ∞ are chosen to be w−1. In this case there is no
natural choice of the point P1 and we will choose it to be (z = α1, w = ∞).

In this case the Universal Whitham times can be solved by the hodograph method [23,30].
They are given by

tαi , j = resw=∞w− j zdw, j = 0, 1

tci , j = −resz=∞z− jwdz, j = 0, 1

th, j =

∮
a j

zdw, j = 1, . . . , g

(66)

where we used the index αi to denote the point (z = αi , w = ∞) and the index ci to denote the
point (z = ∞, w = ci ). The residues are taken around the corresponding points. The integrals
defining the th, j are around a certain choice of a-cycles on the curve. Note that these formula are
independent of the choice of P1. The flows along the tαi , j and tci , j generate the Whitham flows
that comes from the Whitham averaging process, together with the extra flows along th, j , they
form the Universal Whitham hierarchy which generates all the deformations of the curve.

Since the Universal Whitham flows generate all the deformations of the algebraic curve, we
can express the isomonodromic deformations of the spectral curve in terms of the Universal
Whitham flows.

∂

∂αi
=

∑
A

∂tA

∂αi
∂A

∂

∂ci
=

∑
A

∂tA

∂ci
∂A. (67)



M.Y. Mo / Journal of Geometry and Physics 56 (2006) 2237–2260 2255

To see how the isomonodromic times are related to the Universal Whitham times, we first
consider the behavior of w near (z = ∞, w = ci ). Near these points, w has the Laurent
expansion

w = ci + mi
∞z−1

+ O(z−2) (68)

where mi
∞ is the i th entry in the formal exponent of monodromy at z = ∞. From (66) we see

that

tci ,0 = −mi
∞, tci ,1 = −ci . (69)

Similarly, near (z = αi , w = ∞), z has the expansion

z = αi + ni
∞w−1

+ O(w−2) (70)

where ni
∞ is the i th entry in the formal exponent of monodromy at w = ∞ of the dual system

(64). We see that

tαi ,0 = ni
∞, tαi ,1 = αi . (71)

By substituting these into (67) we obtain

∂

∂αi
= ∂αi ,1 +

g∑
k=1

∂

∂αi

(∮
ak

zdw

)
∂h,k

∂

∂ci
= ∂ci ,1 +

g∑
k=1

∂

∂ci

(∮
ak

zdw

)
∂h,k . (72)

To calculate the second terms, first note that since z is single value on the spectral curve, the
derivatives ∂

∂ci
(
∮

ak
zdw) and ∂

∂αi
(
∮

ak
zdw) has no boundary terms. That is, we have

∂

∂ci

(∮
ak

zdw

)
=

∮
ak

∂

∂ci
zdw (73)

∂

∂αi

(∮
ak

zdw

)
=

∮
ak

∂

∂αi
zdw. (74)

To evaluate ∂ci zdw or ∂αi zdw, we can either think of the isomonodromic flows as flows that
keep z fixed and change w as in the original isomonodromic system (58), or we could think of
these flows as keeping w fix and changing z as in the dual isomonodromic system (64). To see
that these two different interpretations make no difference in the final result, let us denote the
determinant in (65) by P(z, w, T ). Let

P(z, w, T ) =

r∑
i=0

n∑
j=0

X i j (T )ziw j
= 0.

Then we see that

∂αi z = −

(
r∑

i=0

n∑
j=0

∂αi X i j (T )ziw j

)
(∂z P(z, w, T ))−1
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∂αi w = −

(
r∑

i=0

n∑
j=0

∂αi X i j (T )ziw j

)
(∂w P(z, w, T ))−1

and similar expressions for ∂ci w and ∂ci z. If we think of the isomonodromic flows as flows that
fix w, the integrals in (73) are then∮

ak

∂

∂αi
zdw = −

∮
ak

(
r∑

i=0

n∑
j=0

∂αi X i j (T )ziw j

)
(∂z P(z, w, T ))−1dw (75)

on the other hand, if we think of the flows as flows that fix z, the integrals become∮
ak

∂

∂αi
zdw =

∮
ak

(
r∑

i=0

n∑
j=0

∂αi X i j (T )ziw j

)
(∂w P(z, w, T ))−1dz (76)

since
∮

ak
zdw = −

∮
ak

wdz as zdw + wdz is a total differential.
To see that the right hand sides of (75) and (76) are the same, note that by differentiating

the expression P(z, w, T ) = 0, we have (∂w P(z, w, T ))−1dz = −(∂z P(z, w, T ))−1dw. By
replacing the αi derivatives in (75) and (76) by derivatives of ci and applying a similar argument,
we see that the same holds for the ci derivatives.

To compute the derivatives of the X i j , recall that an isomonodromic deformation changes the
matrix A(z) in the following way

dA(z, T ) = ∂z B(z, T ) − [A(z, T ), B(z, T )].

The matrix 1-form B(z, T ) in this case is

B(z, T ) =

r∑
i=1

Bαi (z, T )dαi +

n∑
i=1

Bci (z, T )dci

where the Bαi (z, T ) and the Bci (z, T ) are as follows [15]

Bαi (z, T ) = −
Aαi

(z − αi )
(77)

Bci (z, T ) = zEi +

∑
j 6=i

r∑
k=1

Ei Aαk E j + E j Aαk Ei

αi − α j
(78)

where Ei are the n × n diagonal matrices with 1 on the i th entry and zero elsewhere.
The key observation here is that ∂z Bαi = ∂e

αi
A(z, T ) and ∂z Bci = ∂e

ci
A(z, T ), where ∂e

αi
and

∂e
ci

denotes the explicit derivatives with respect to αi and ci .
Therefore we have

∂i A(z, T ) = ∂e
i A(z, T ) − [A(z, T ), Bi (z, T )]

where the index i will be used to denote αi or ci .
Since the commutator term [A(z, T ), Bi (z, T )] fixes the spectral invariance of the matrix

A(z, T ) and it is known that the coefficients X i j (T ) of the spectral curve are spectrally invariant,
[15] we see that the derivatives ∂T X i j in (76) or (75) are the same as their explicit derivatives
with respect to the times T . That is

∂T X i j = ∂e
T X i j (79)
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this observation simplifies the calculations significantly as the explicit dependences of the
coefficients X i j on αi and ci are polynomials, which can be seen from (65).

In summary, the isomonodromic flows and the Universal Whitham flows are related by

Proposition 8. Let A(z) be a matrix of the form

A(z) = GT(∆ − z)−1 F + C

where G, F are n × r matrices constant in z, ∆ = diag(α1, . . . , αr ) and C = diag(c1, . . . , cn).
Define the spectral curve of A(z) by

det
[
M −

(
z 0
0 w

)]
= 0

where M is the following matrix

M =

(
∆ −F
G t C

)
then, when the system of linear ODE

dY

dz
= A(z, T )Y

deforms isomonodromically with deformation parameters αi and ci , the deformations of the
spectral curve in CP1

× CP1 can be expressed in terms of the Universal Whitham flows (defined
in Definition 3) as follows

∂αi = ∂αi ,1 +

g∑
k=1

∮
ak

(
r∑

i=0

n∑
j=0

∂e
αi

X i j (T )ziw j

)
P−1

w dz∂h,k

∂ci = ∂ci ,1 +

g∑
k=1

∮
ak

(
r∑

i=0

n∑
j=0

∂e
ci

X i j (T )ziw j

)
P−1

w dz∂h,k (80)

where ∂e
i denotes the explicit derivative and Pw is the w derivative of P(z, w, T ). The flows ∂αi ,1

and ∂ci ,1 are the Whitham flows that come from the Whitham averaging. The isomonodromic
flows coincide with the Whitham flows if and only if the summation parts in (80) vanish.

Here the twistor space of the Universal Whitham hierarchy is taken to be the set of algebraic
curves given by the zero locus of polynomials P(z, w) in CP1

× CP1, where P(z, w) has degree
at most n in w and r in z. The marked points are the points where z or w is infinity.

Remark. As one could see from (80), the contraction ∂iyΠ of ∂i with the 2-form dz ∧dw would
result in a 1-form on the curve that is holomorphic everywhere apart from a second order pole
at the point (z = αi , w = ∞) for ∂αi or (z = ∞, w = ci ) for ∂ci . In [28,29], Takasaki raised
the question of whether it is possible to choose a canonical basis of cycles that could make these
1-forms normalized. This is the same as choosing a basis of cycles so that the summation parts in
(80) vanish. This example does not imply that the isomonodromic flows and the Whitham flows
coincide. However, by the observation (79), we show that the formula in [28,29] can be greatly
simplified.

We will now give an example.
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Example 4. Painlevé V.

The Painlevé V equation is the following second order nonlinear ODE

u′′
= (u′)2

(
1

2u
+

1
u − 1

)
−

u′

t
+

(u − 1)2

t2

(
αu +

β

u

)
+

γ u

t
+

δu(u + 1)

u − 1

where α, β, γ and δ are constants. It can be represented as the isomonodromic deformations of a
system of linear ODEs in which A(z) is of the following form [18]

A(z) =
A1

z − 1
+

A0

z
+

(
t 0
0 −t

)
.

We will follow the approach in [15] to construct the spectral curve. We first set the constant δ to
be δ = 2. In this case, the matrices A0 and A1 will be of rank 1 and a factorization in (63) can be
carried out.

In [15], the Painlevé V was represented by the isomonodromic deformations of the system of
linear ODEs

dY

dz
Y −1

=

(
t 0
0 −t

)
+ 2z−1

−x1 y1 − µ1 −y2
1 +

µ2
1

x2
1

x2
1 x1 y1 − µ1


+ 2(z − 1)−1

−x2 y2 − µ2 −y2
2 +

µ2
2

x2
2

x2
2 x2 y2 − µ2


in which µ1, µ2 and c =

1
2 (x1 y1 + x2 y2) are constants. These constants are related to α, β and

γ as follows

α =
µ2

2

2
, β = −

µ2
1

2
, γ = 4c + 2.

The solution y to the Painlevé V equation is given by u = −
x2

1
x2

2
.

The factorization (63) is given by

F =
1

√
2

x1 y1 −
µ1

x1

x2 y2 −
µ2

x2

 , G =
1

√
2

y1 +
µ1

x1
−x1

y2 +
µ2

x2
−x2


with ∆ = diag(0, 1).

The spectral curve is then

P(z, w) = z2w2
− w2z + (µ1)wz − (µ1 + µ2)w − t2z2

+ (t2
+ t x1 y1)z

− 2ct +
1
4

(
(x1 y2 − x2 y1)

2
+

(
µ2

1

u
+ µ2

2u

))
= 0.

This curve is of genus 1. The fixed points are (z = 0, w = ∞), (z = 1, w = ∞),
(z = ∞, w = t) and (z = ∞, w = −t). We can now apply (80) to express ∂t in terms of
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the Universal Whitham flows

∂t = ∂t,1 +

∮
a
(−2t z2

+ (2t + x1 y1)z − 2c)P−1
w dz∂h,1

where a is an a-cycle chosen on the curve.
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